1.

$$
\mathrm{f}(x)=2 x^{3}+x-10
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[1.5,2]$

The only real root of $\mathrm{f}(x)=0$ is α
The iterative formula

$$
x_{n+1}=\left(5-\frac{1}{2} x_{n}\right)^{\frac{1}{3}}, \quad x_{0}=1.5
$$

can be used to find an approximate value for α
(b) Calculate x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places.
(c) By choosing a suitable interval, show that $\alpha=1.6126$ correct to 4 decimal places.
a) $\begin{array}{rlrl}f(1-5)=-1.75 & f(2) & =8 \quad \therefore \text { by sign change rule } \\ <0 \quad & >0 \quad 1.5<\alpha<2\end{array}$
b) $x_{0}=1.5 \quad x_{1}=1.6198 \quad x_{2}=1.6122 \quad x_{3}=1.6126$
c) $f(1.61255)=-0.001166<0 \quad \therefore$ by sign change $f(1.61265)=0.000493>0$ rule

$$
\alpha=1.6126
$$

2. A curve C has the equation

$$
x^{3}-3 x y-x+y^{3}-11=0
$$

Find an equation of the tangent to C at the point $(2,-1)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

$$
\begin{align*}
& \frac{d}{d x}\left(x^{3}-3 x y-x+y^{3}-11\right) \tag{6}\\
& 3 x^{2}-3 x \frac{d y}{d x}-3 y-1+3 y^{2} \frac{\partial y}{d x}=0 \\
& \Rightarrow\left(3 y^{2}-3 x\right) \frac{\partial y}{d x}=1+3 y-3 x^{2} \\
& \therefore \frac{d y}{d x}=\frac{1+3 y-3 x^{2}}{3 y^{2}-3 x} \quad \text { at }(2,-1) \\
& y+1=\frac{14}{3}(x-2) \quad M t=\frac{1-3-12}{3-6}=\frac{14}{3} \\
& y y+3=14 x-28
\end{align*}
$$

$$
|4 x-3 y-3|=0
$$

3. Given that

$$
y=\frac{\cos 2 \theta}{1+\sin 2 \theta}, \quad-\frac{\pi}{4}<\theta<\frac{3 \pi}{4}
$$

show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{a}{1+\sin 2 \theta}, \quad-\frac{\pi}{4}<\theta<\frac{3 \pi}{4}
$$

where a is a constant to be determined.

$$
\begin{align*}
u & =\cos 2 \theta \quad v=1+\sin 2 \theta \tag{4}\\
u^{\prime} & =-2 \sin 2 \theta \quad v^{\prime}=2 \cos 2 \theta \\
\therefore \frac{d u}{d \theta} & =\frac{-2 \sin 2 \theta(1+\sin 2 \theta)-2 \cos ^{2} 2 \theta}{(1+\sin 2 \theta)^{2}} \\
& =-\frac{2 \sin 2 \theta-2\left(\sin ^{2} 2 \theta+\cos ^{2} 2 \theta\right)}{(1+\sin 2 \theta)^{2}} \\
& =\frac{-2(1+\sin 2 \theta)}{(1+\sin 2 \theta)^{2}}=\frac{-2}{1+\sin 2 \theta}
\end{align*}
$$

4. Find
(a) $\int(2 x+3)^{12} \mathrm{~d} x$
(b) $\int \frac{5 x}{4 x^{2}+1} \mathrm{~d} x$
a) $\frac{1}{13}(2 x+3)^{13} \div 2=\frac{1}{26}(2 x+3)^{13}+c$
b) $\frac{5}{8} \int \frac{8 x}{4 x^{2}+1} d x=\frac{5}{8} \ln \left(4 x^{2}+1\right)+c$
5.

$$
f(x)=\left(8+27 x^{3}\right)^{\frac{1}{3}}, \quad|x|<\frac{2}{3}
$$

Find the first three non-zero terms of the binomial expansion of $\mathrm{f}(x)$ in ascending powers of x. Give each coefficient as a simplified fraction.

$$
\begin{align*}
& 8^{\frac{1}{3}}\left(1+\frac{27}{8} x^{3}\right)^{\frac{1}{3}} \tag{5}\\
= & 2\left[1+\left(\frac{1}{3}\right)\left(\frac{27}{8} x^{3}\right)+\left(\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2}\left(\frac{27}{8} x^{3}\right)^{2}\right]\right. \\
= & 2+\frac{9}{4} x^{3}+-\frac{81}{32} x^{6}
\end{align*}
$$

6. (a) Express $\frac{5-4 x}{(2 x-1)(x+1)}$ in partial fractions.
(b) (i) Find a general solution of the differential equation

$$
(2 x-1)(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}=(5-4 x) y, \quad x>\frac{1}{2}
$$

Given that $y=4$ when $x=2$,
(ii) find the particular solution of this differential equation. Give your answer in the form $y=\mathrm{f}(x)$.

$$
\begin{aligned}
& 5 x^{4} \frac{S-4 x}{(2 x-1)(x+1)}=\frac{A}{2 x-1}+\frac{B}{x+1} \\
& 5-4 x=A(x+1)+B(2 x-1) \\
& x=-1 \Rightarrow 9=-3 B \quad \therefore \frac{B=-3}{2} \quad \therefore \frac{2}{2 x-1}-\frac{3}{x+1} \\
& x=\frac{1}{2} \Rightarrow 3=1 \frac{1}{2} A \quad A=2
\end{aligned}
$$

2
b) $\int \frac{1}{y} d y=\int \frac{(5-4 x)}{(2 x-1)(x+1)} d x$

$$
\therefore \ln y=\ln (2 x-1)-3 \ln (x+1)+c
$$

$(2,4) \quad \ln 4=\ln 3-3 \ln 3+c \quad \ln 4=-2 \ln 3+c$

$$
\begin{aligned}
& c=\ln 4+2 \ln 3=\ln 4+\ln 9=\ln 36 . \\
\therefore \quad & \ln y=\ln (2 x-1)-\ln (x+1)^{3}+\ln 36 \\
\therefore \quad & y=\frac{36(2 x-1)}{(x+1)^{3}}
\end{aligned}
$$

7. The function f is defined by

$$
\mathrm{f}: x \mapsto \frac{3 x-5}{x+1}, \quad x \in \mathbb{R}, x \neq-1
$$

(a) Find an expression for $\mathrm{f}^{-1}(x)$
(b) Show that

$$
\mathrm{ff}(x)=\frac{x+a}{x-1}, \quad x \in \mathbb{R}, x \neq-1, x \neq 1
$$

where a is an integer to be determined.

The function g is defined by

$$
\mathrm{g}: x \mapsto x^{2}-3 x, \quad x \in \mathbb{R}, 0 \leqslant x \leqslant 5
$$

(c) Find the value of $\mathrm{fg}(2)$
(d) Find the range of g

$$
\begin{array}{r}
x=\frac{3 y-5}{y+1} \Rightarrow x y+x=3 y-5 \Rightarrow 3 y-x y=x+1 \\
y(3-x)=x+5 \quad \therefore y=\frac{x+5}{3-x}
\end{array}
$$

5) $f f(x)=\frac{3\left(\frac{3 x-5}{x+1}\right)-5}{\left(\frac{3 x-5}{x+1}\right)+1}=\frac{\frac{9 x-15-5(x+1)}{(x+1)}}{\frac{3 x-5+(x+1)}{(x+1)}}$

$$
=\frac{4 x-20}{4 x-4}=\frac{4(x-5)}{4(x-1)}=\frac{x-5}{x-1}
$$

c) $f y(2)=f\left(2^{2}-3(2)\right)=f(-2)=\frac{-6-5}{-2+1}=\frac{-11}{-1}=11$
d) $g(x)=x(x-3)$

$$
\begin{aligned}
& g(1 \cdot 5)=-\frac{9}{4} \quad-\frac{9}{4} \leqslant g(x) \leqslant 11 \\
& g(s)=10
\end{aligned}
$$

8. The volume V of a spherical balloon is increasing at a constant rate of $250 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

Find the rate of increase of the radius of the balloon, in $\mathrm{cm} \mathrm{s}^{-1}$, at the instant when the volume of the balloon is $12000 \mathrm{~cm}^{3}$.
Give your answer to 2 significant figures.
[You may assume that the volume V of a sphere of radius r is given by the formula $\left.V=\frac{4}{3} \pi r^{3}.\right]$
$\frac{d V}{d t}=250$ find $\frac{d r}{d t}$ when $V=12000$

$$
\begin{array}{rlr}
\frac{d V}{d r}=4 \pi r^{2} \quad \frac{d r}{d t} & =\frac{d r}{d V} \times \frac{d V}{d t} \\
\frac{d r}{d t}=\left(\frac{1}{4 \pi r^{2}}\right)(250) & =\frac{250}{4 \pi r^{2}} \quad \begin{array}{ll}
4 & V=12000=\frac{4}{3} \pi r^{3} \\
& =0.099 \mathrm{~cm}(\mathrm{sec}
\end{array}
\end{array}
$$

9.

Figure 1
Figure 1 shows a sketch of part of the curve with equation $y=\mathrm{e}^{\sqrt{x}}, x>0$
The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the lines $x=4$ and $x=9$
(a) Use the trapezium rule, with 5 strips of equal width, to obtain an estimate for the area of R, giving your answer to 2 decimal places.
(b) Use the substitution $u=\sqrt{x}$ to find, by integrating, the exact value for the area of R. $n=1$
b)

$$
\begin{gathered}
u=x^{\frac{1}{2}} \frac{d u}{d x}=\frac{1}{2} x^{-\frac{1}{2}} \quad d x=2 x^{\frac{1}{2}} d u=2 \\
\therefore \int_{4}^{9} y d x=\int_{2}^{u} \times 2 u d u \quad u=2 u \quad v= \\
=\left[2 u e^{u}-2 \int e^{u} d u\right]_{2}^{3}=\left[2 u e^{u}-2 e^{u}\right. \\
=\left[2 e^{u}(u-1)\right]_{2}^{3}=4 e^{3}-2 e^{2}
\end{gathered}
$$

$$
=2 u d u
$$

$$
\begin{aligned}
& \xrightarrow[2]{65.69}
\end{aligned}
$$

10. (a) Use the identity for $\sin (A+B)$ to prove that

$$
\begin{equation*}
\sin 2 A \equiv 2 \sin A \cos A \tag{2}
\end{equation*}
$$

(b) Show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\ln \left(\tan \left(\frac{1}{2} x\right)\right)\right]=\operatorname{cosec} x \tag{4}
\end{equation*}
$$

A curve C has the equation

$$
y=\ln \left(\tan \left(\frac{1}{2} x\right)\right)-3 \sin x, \quad 0<x<\pi
$$

(c) Find the x coordinates of the points on C where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$

Give your answers to 3 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
let $A=B$

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin (A+A)=\sin A \cos A+\cos A \sin A \\
& \sin 2 A \equiv 2 \sin A \cos A
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{d}{d x}\left(\ln \left[\tan \left(\frac{1}{2} x\right)\right]\right)=\frac{\frac{1}{2} \sec ^{2}\left(\frac{1}{2} x\right)}{\tan \left(\frac{1}{2} x\right)}=\frac{1}{2\left[\cos \left(\frac{1}{2} x\right)\right]^{2}} \times \frac{\cos \left(\frac{1}{2} x\right)}{\sin \left(\frac{1}{2} x\right)} \\
& \quad=\frac{1}{2 \sin \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} x\right)=\frac{1}{\sin x}=\operatorname{cosec} x}
\end{aligned}
$$

4) $\frac{d y}{d x}=0 \Rightarrow \operatorname{cosec} x-3 \cos x=0 \Rightarrow 3 \cos x=\frac{1}{\sin x}$

$$
\begin{gathered}
\Rightarrow 3 \sin x \cos x=1 \Rightarrow 2 \sin x \cos x=\frac{2}{3} \\
\Rightarrow \sin 2 x=\frac{2}{3} \Rightarrow 2 x=\sin ^{-1}\left(\frac{2}{3}\right)=0.7297 \ldots, 2.412 \\
\therefore x=0.3648 \ldots \\
x=0.365^{\circ} \\
x=1.206^{c}
\end{gathered}
$$

Figure 2
Figure 2 shows a sketch of part of the curve C with equation

$$
y=\mathrm{e}^{a-3 x}-3 \mathrm{e}^{-x}, \quad x \in \mathbb{R}
$$

where a is a constant and $a>\ln 4$
The curve C has a turning point P and crosses the x-axis at the point Q as shown in Figure 2.
(a) Find, in terms of a, the coordinates of the point P.
(b) Find, in terms of a, the x coordinate of the point Q.
(c) Sketch the curve with equation

$$
y=\left|\mathrm{e}^{a-3 x}-3 \mathrm{e}^{-x}\right|, \quad x \in \mathbb{R}, a>\ln 4
$$

Show on your sketch the exact coordinates, in terms of a, of the points at which the curve meets or cuts the coordinate axes.

$$
\begin{align*}
& \frac{d u}{d x}=-3 e^{a-3 x}+3 e^{-x}=0 \quad 3 e^{-x}=3 e^{a-3 x} \tag{3}\\
& \therefore-x=a-3 x \\
& y=e^{a-\frac{3}{2} a}-3 e^{-\frac{a}{2}}=e^{-\frac{a}{2}}-3 e^{-\frac{a}{2}} \quad \begin{aligned}
2 x & =a \\
x & =\frac{1}{2} a
\end{aligned}
\end{align*}
$$

$$
\left(\frac{1}{2} a,-2 e^{-\frac{a}{2}}\right)
$$

b)

$$
\begin{aligned}
& y=0 \Rightarrow \quad e^{a-3 x}=3 e^{-x} \\
& \ln e^{a-3 x}=\ln 3 e^{-x} \\
& a-3 x=\ln 3+\ln e^{-x} \\
& a-3 x=\ln 3-x \quad \therefore 2 x=a-\ln 3 \\
& x=\frac{1}{2}(a-\ln 3) \\
& 2
\end{aligned}
$$

c)

$$
x=0 \quad y=e^{a}-3
$$

Figure 3
Figure 3 shows a sketch of part of the curve C with parametric equations

$$
x=\tan t, \quad y=2 \sin ^{2} t, \quad 0 \leqslant t<\frac{\pi}{2}
$$

The finite region S, shown shaded in Figure 3, is bounded by the curve C, the line $x=\sqrt{3}$ and the x-axis. This shaded region is rotated through 2π radians about the x-axis to form a solid of revolution.
(a) Show that the volume of the solid of revolution formed is given by

$$
\begin{equation*}
4 \pi \int_{0}^{\frac{\pi}{3}}\left(\tan ^{2} t-\sin ^{2} t\right) \mathrm{d} t \tag{6}
\end{equation*}
$$

(b) Hence use integration to find the exact value for this volume.

$$
\begin{aligned}
& \text { (2a) } \text { Volume }=\pi \int y^{2} d x=\pi \int_{x=0}^{x=\sqrt{3}} y^{2} \frac{d x}{d t} d t \\
& \tan t=\sqrt{3} \quad \therefore t=\frac{\pi}{3} \\
& \text { tunt }=0 \quad \therefore t=0 \\
& x=\tan t \quad y^{2}=4 \sin ^{4} t \\
& \frac{d x}{d t}=\sec ^{2} t \quad \therefore \text { Volume }=4 \pi \int_{0}^{\frac{\pi}{3}} \sin ^{4} t \sec ^{2} t d t \\
& =4 \pi \int_{0}^{\frac{\pi}{3}} \frac{\sin ^{2} t\left(1-\cos ^{2} t\right)}{\cos ^{2} t} d t t=4 \pi \int_{0}^{\frac{\pi}{3}} \tan ^{2} t\left(1-\cos ^{2} t\right) d t \\
& =4 \pi \int_{0}^{\pi / 3} \tan ^{2} t-\frac{\sin ^{2} t}{\cos ^{2} t} x \cos ^{2} t d t=4 \pi \int_{0}^{\pi / 3} \tan ^{2} t-\sin ^{2} t d t \\
& \text { b) } \\
& \frac{\sin ^{2}+\frac{\cos ^{2}}{\cos ^{2}}=\frac{1}{\cos ^{2}} \cos ^{2}}{\Rightarrow \tan ^{2}+1=\sec ^{2} .1+\sec ^{2} x=\tan ^{2} x} \\
& \cos 2 t=1-2 \sin ^{2} t \\
& \sin ^{2} t=\frac{1}{2}-\frac{1}{2} \cos 2 t \\
& =4 \pi \int_{0}^{\frac{\pi}{3}} \sec ^{2} x-1-\frac{1}{2}+\frac{1}{2} \cos 2 t d t \\
& =4 \pi \int_{0}^{\frac{\pi}{3}} \sec ^{2} x+\frac{1}{2} \cos n t-\frac{3}{2} d t=2 \pi \int_{0}^{\frac{\pi}{3}} 2 \sec ^{2} x+\cos 2 t-3 d t \\
& =2 \pi\left[2 \tan x+\frac{1}{2} \sin 2 t-3 t\right]_{0}^{\frac{\pi}{3}} \\
& =2 \pi\left[\left(2 \sqrt{3}+\frac{\sqrt{3}}{4}-\pi\right)-(0)\right] \\
& =2 \pi\left[\frac{9 \sqrt{3}}{4}-\pi\right]=\frac{1}{2} \pi(9 \sqrt{3}-4 \pi)
\end{aligned}
$$

13. (a) Express $2 \sin \theta+\cos \theta$ in the form $R \sin (\theta+\alpha)$, where R and α are constants,
$R>0$ and $0<\alpha<90^{\circ}$. Give your value of α to 2 decimal places.
$\begin{array}{rr}R \sin (\theta+\alpha)=R \sin \theta \cos \alpha+R \cos \theta \sin \alpha & R \sin \alpha=1 \\ 2 \sin \theta+1 \cos \theta & R \cos \alpha=2\end{array}$
$\tan \alpha=\frac{1}{2} \quad \alpha=0.463647 \quad \alpha=0.46^{c} \quad R^{2}$
$\sqrt{5} \sin \left(\theta+0.46^{c}\right) \quad \simeq \sqrt{5} \sin (\alpha+26.57)$

Figure 4
Figure 4 shows the design for a logo that is to be displayed on the side of a large building. The logo consists of three rectangles, C, D and E, each of which is in contact with two horizontal parallel lines l_{1} and l_{2}. Rectangle D touches rectangles C and E as shown in Figure 4.

Rectangles C, D and E each have length 4 m and width 2 m . The acute angle θ between the line l_{2} and the longer edge of each rectangle is shown in Figure 4.

Given that l_{1} and l_{2} are 4 m apart,
(b) show that

$$
\begin{equation*}
2 \sin \theta+\cos \theta=2 \tag{2}
\end{equation*}
$$

Given also that $0<\theta<45^{\circ}$,
(c) solve the equation

$$
2 \sin \theta+\cos \theta=2
$$

giving the value of θ to 1 decimal place.
Rectangles C and D and rectangles D and E touch for a distance $h \mathrm{~m}$ as shown in Figure 4.

Using your answer to part (c), or otherwise,
(d) find the value of h, giving your answer to 2 significant figures.
b)

$$
\begin{aligned}
& \therefore \quad 4 \sin \theta+2 \cos \theta=4 \\
& \therefore \quad 2 \sin \theta+\cos \theta=2
\end{aligned}
$$

c) $\sqrt{\sin } \sin \left(\theta+0.46^{\circ}\right)=2$

$$
\begin{gathered}
\theta+26.57=\sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)=63.4,116.56 \ldots \\
\therefore \theta=36.9^{\circ}
\end{gathered}
$$

d)

$$
\begin{aligned}
2 \sim & \tan \theta \\
\int_{01}^{x} & =\frac{2}{x} \therefore x=\frac{2}{\tan \theta}=\frac{8}{3} \\
\therefore h & =4-\frac{8}{3}=\frac{\frac{4}{3} m}{2}=1-3 \mathrm{~m}
\end{aligned}
$$

14. Relative to a fixed origin O, the line l has vector equation

$$
\mathbf{r}=\left(\begin{array}{r}
-1 \\
-4 \\
6
\end{array}\right)+\lambda\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right)
$$

where λ is a scalar parameter.
Points A and B lie on the line l, where A has coordinates $(1, a, 5)$ and B has coordinates $(b,-1,3)$.
(a) Find the value of the constant a and the value of the constant b.
(b) Find the vector $\overrightarrow{A B}$.

The point C has coordinates $(4,-3,2)$
(c) Show that the size of the angle $C A B$ is 30°
(d) Find the exact area of the triangle $C A B$, giving your answer in the form $k \sqrt{3}$, where k is a constant to be determined.

The point D lies on the line l so that the area of the triangle $C A D$ is twice the area of the triangle $C A B$.
(e) Find the coordinates of the two possible positions of D.
a) $\left(\begin{array}{c}-1+2 \lambda \\ -4+\lambda \\ 6-\lambda\end{array}\right)=\left(\begin{array}{l}1 \\ a \\ 5\end{array}\right) \quad \lambda=1 \quad \therefore \frac{a=-3}{2}\left(\begin{array}{c}-1+2 \lambda \\ -4+\lambda \\ 6-\lambda\end{array}\right)=\left(\begin{array}{c}b \\ -1 \\ 3\end{array}\right) \therefore \begin{gathered}\lambda=3 \\ \therefore b=5\end{gathered}$
b) $\overrightarrow{A B}=b-a=\left(\begin{array}{c}5 \\ -1 \\ 3\end{array}\right)-\left(\begin{array}{c}1 \\ -3 \\ 5\end{array}\right)=\left(\begin{array}{c}4 \\ 2 \\ -2\end{array}\right)$
c) $\overrightarrow{A C}=c-a=\left(\begin{array}{c}4 \\ 3 \\ 2\end{array}\right)-\left(\begin{array}{c}1 \\ 3 \\ 5\end{array}\right)=\left(\begin{array}{c}3 \\ 0 \\ -3\end{array}\right)$

$$
\begin{aligned}
\cos \theta=\frac{\left(\begin{array}{c}
4 \\
2 \\
-2
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
0 \\
-3
\end{array}\right)}{\left|\left(\begin{array}{c}
4 \\
2 \\
-2
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
0 \\
-3
\end{array}\right)\right|} \Rightarrow \cos \theta=\left(\frac{18}{\sqrt{24 \times 18}}\right) \therefore \cos \theta=\frac{18}{12 \sqrt{3}} \\
\quad \therefore \cos \theta=\frac{18 \sqrt{3}}{36}=\frac{\sqrt{3}}{2} \therefore \theta=\frac{30^{\circ}}{2}
\end{aligned}
$$

d)

$$
\text { Area }=\frac{1}{2} \sqrt{24} \sqrt{18} \sin 30=\frac{12 \sqrt{3}}{4}=\frac{3 \sqrt{3}}{5}
$$

e)

$$
\text { Area }=6 \sqrt{3}
$$

$$
\frac{1}{2} \sqrt{2}+|\overrightarrow{A D}| \sin 30=6 \sqrt{3}
$$

$$
\therefore(\overrightarrow{A D})=\frac{24 \sqrt{3}}{\sqrt{24}}=6 \sqrt{2}
$$

$$
A B=\sqrt{18}=3 \sqrt{2} .
$$

$$
\therefore \quad \overrightarrow{A D}=2 \times \overrightarrow{A B}
$$

$$
\begin{aligned}
& d=a \pm 2 \overrightarrow{A B} \\
& d=\left(\begin{array}{c}
1 \\
-3 \\
5
\end{array}\right) \pm 2\left(\begin{array}{c}
4 \\
2 \\
-2
\end{array}\right)=\left(\begin{array}{l}
9 \\
1 \\
1
\end{array}\right) \text { or }\left(\begin{array}{c}
-7 \\
-7 \\
9
\end{array}\right) \\
& (9,1,1) \text { or }(-7,7,9)
\end{aligned}
$$

